Seawater carbonate chemistry for brooded coral larval experiments, Taiwan, March 2011 and 2012 (Cumbo, 2013)(MCR LTER project, Climate_Coral_Larvae project)

Website: https://www.bco-dmo.org/dataset/528806
Version: 2014-08-30

Project
» Moorea Coral Reef Long-Term Ecological Research site (MCR LTER)
» The ecophysiological basis of the response of coral larvae and early life history stages to global climate change (Climate_Coral_Larvae)

Program
» Long Term Ecological Research network (LTER)
ContributorsAffiliationRole
Edmunds, Peter J.California State University Northridge (CSUN)Principal Investigator
Cumbo, Vivian RCalifornia State University Northridge (CSUN)Scientist
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179' N, 120°44.85' E), were exposed to ambient (419-470 µatm) and high (604-742 µatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality.

The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.

These data include the seawater carbonate chemistry monitored from the experimental tanks, March 2011 and 2012.

Related datasets:

brooded coral larvae 2 - larval release March 2003-2008
brooded coral larvae 2 - respiration_photosyth_mortality

These data are published in Vivian R Cumbo, Peter J Edmunds, Christopher B Wall, Tung-Yung Fan. (2013) Brooded coral larvae differ in their response to high temperature and elevated pCO2 depending on the day of release. Marine Biology. See Table 1.

Download complete data for this publication (Excel file)
Data also available from PANGAEA: DOI 10.1007/s00227-013-2280-y


Methods & Sampling

To determine the dissolved inorganic carbon (DIC) chemistry of seawater in the treatments, total alkalinity (TA), pH on the total scale, temperature, and salinity were measured using standard procedures, and used to calculate pCO2 (uatm), HCO3 - (umolkg-1), CO3 2- (umolkg-1), and the aragonite saturation state (XArag) of seawater using CO2SYS (Pierrot et al. 2006). TA (umol kg-1) was measured through potentiometric titration (SOP 3b, Dickson et al. 2007) using an automatic titrator (DL50, Mettler Toledo) filled with certified acid titrant (0.1 M HCl, 0.6 NaCl, Dickson Laboratory, Scripps Institution of Oceanography). The pH probe (DG101-SC, Mettler Toledo) attached to the titrator was 3-point calibrated with pH 4.00, 7.00, and 10.00 buffers (Fisher, NBS). Certified reference material with a known TA (Batch 98, http://andrew.ucsd. edu/index.html) was titrated daily to determine the accuracy and precision of the analyses. 

Seawater samples (50 mL) from the treatment tanks were brought to 25C, weighed and titrated in a waterjacketed beaker within 2-3 h of collection. The pH values and the titrant volumes (cm3) obtained from the titrations were sub-sampled for the range between pH 3.0 and 3.5 and inserted into a Microsoft Excel spreadsheet (Fangue et al. 2010), which calculated Gran’s function as a product of the mass of titrant added (Dickson et al. 2007). Treatment tank pH was determined spectrophotometrically using m-cresol purple dye (Sigma-Aldrich) following SOP 6b of Dickson et al. (2007) with modification (Fangue et al. 2010). Preliminary sampling of the seawater in the tanks throughout the day confirmed that the pCO2 treatments were stable over a 24-h period.

References:

Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, p 191

Fangue NA, O’Donnell MJ, Sewell MA, Matson PG, MacPherson AC, Hoffman GE (2010) A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr Methods 8:441-452


Data Processing Description

BCO-DMO processing notes:

- added conventional header with dataset name, PI name, version date, reference information
- added lab, lat, lon, expt columns
- renamed parameters to BCO-DMO standard
- combined data from Table 1, 2012 and 2012 - sorted by date, temp, treatment


[ table of contents | back to top ]

Data Files

File
brood2_carb_chem.csv
(Comma Separated Values (.csv), 5.99 KB)
MD5:3db9b129ca78efc0405b3f84c1be2845
Primary data file for dataset ID 528806

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
expt

experiment id

unitless
lab

laboratory

unitless
lat

latitude; north is positive

decimal degrees
lon

longitude; east is positive

decimal degrees
month

experiment month

unitless
tank

tank id number

tank
date

local date of measurement

yyyy-mm-dd
pH

pH: The measure of the acidity or basicity of an aqueous solution

pH scale
temp

temperature

degees Celsius
sal

salinity

PSU scale
TA

total alkalinity

umol/kg
pCO2

partial pressure of carbon dioxide by computation from pH and alkalinity

uatm
bicarbonate

concentration of bicarbonate ion ([HCO3]-) in seawater

umol/kg
carbonate

concentration of carbonate ion ([CO3]2-)

umol/kg
omega_Ara

the saturation state of seawater with respect to aragonite

unitless


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Automatic titrator
Generic Instrument Name
Automatic titrator
Dataset-specific Description
Model DL50, Mettler-Toledo, Columbus, OH, USA
Generic Instrument Description
Instruments that incrementally add quantified aliquots of a reagent to a sample until the end-point of a chemical reaction is reached.


[ table of contents | back to top ]

Deployments

lab_Edmunds_NMMBA

Website
Platform
Natl Museum Mar. Bio. and Aquar. Taiwan
Start Date
2010-03-18
End Date
2010-03-24
Description
Experiments related to the research project:  'RUI- The ecophysiological basis of the response of coral larvae and early life history stages to global climate change' were conducted at the laboratories of the National Museum of Marine Biology and Aquarium in Southern Taiwan.


[ table of contents | back to top ]

Project Information

Moorea Coral Reef Long-Term Ecological Research site (MCR LTER)


Coverage: Island of Moorea, French Polynesia


From http://www.lternet.edu/sites/mcr/ and http://mcr.lternet.edu/:
The Moorea Coral Reef LTER site encompasses the coral reef complex that surrounds the island of Moorea, French Polynesia (17°30'S, 149°50'W). Moorea is a small, triangular volcanic island 20 km west of Tahiti in the Society Islands of French Polynesia. An offshore barrier reef forms a system of shallow (mean depth ~ 5-7 m), narrow (~0.8-1.5 km wide) lagoons around the 60 km perimeter of Moorea. All major coral reef types (e.g., fringing reef, lagoon patch reefs, back reef, barrier reef and fore reef) are present and accessible by small boat.

The MCR LTER was established in 2004 by the US National Science Foundation (NSF) and is a partnership between the University of California Santa Barbara and California State University, Northridge. MCR researchers include marine scientists from the UC Santa Barbara, CSU Northridge, UC Davis, UC Santa Cruz, UC San Diego, CSU San Marcos, Duke University and the University of Hawaii. Field operations are conducted from the UC Berkeley Richard B. Gump South Pacific Research Station on the island of Moorea, French Polynesia.

MCR LTER Data: The Moorea Coral Reef (MCR) LTER data are managed by and available directly from the MCR project data site URL shown above.  The datasets listed below were collected at or near the MCR LTER sampling locations, and funded by NSF OCE as ancillary projects related to the MCR LTER core research themes.

This project is supported by continuing grants with slight name variations:

  • LTER: Long-Term Dynamics of a Coral Reef Ecosystem
  • LTER: MCR II - Long-Term Dynamics of a Coral Reef Ecosystem
  • LTER: MCR IIB: Long-Term Dynamics of a Coral Reef Ecosystem
  • LTER: MCR III: Long-Term Dynamics of a Coral Reef Ecosystem
  • LTER: MCR IV: Long-Term Dynamics of a Coral Reef Ecosystem

The ecophysiological basis of the response of coral larvae and early life history stages to global climate change (Climate_Coral_Larvae)

Coverage: Moorea, French Polynesia; Southern Taiwan; California State University Northridge


Tropical coral reefs face a suite of environmental assaults ranging from anchor damage to the effects of global climate change (GCC). The consequences are evident throughout the tropics, where many coral reefs have lost a substantial fraction of their coral cover in a few decades. Notwithstanding the importance of reducing the impacts of environmental stresses, the only means by which these ecosystems can recover (or simply persist) is through the recruitment of scleractinians, which is a function of successful larval development, delivery, settlement, metamorphosis, and post-settlement events. Despite wide recognition of the importance of these processes, there are few pertinent empirical data, and virtually none that address the mechanisms mediating the success of early coral life stages in a physical environmental varying at multiple spatio-temporal scales.

The objective of this research is to complete one of the first comprehensive ecophysiological analyses of the early life stages of corals through a description of: (1) their functionality under 'normal' conditions, and (2) their response to the main drivers of GCC. These analyses will be completed for 2 species representative of a brooding life history strategy, and the experiments will be completed in two locations, one (Taiwan) that provides unrivalled experience in coral reproductive biology, and superb microcosm facilities, and the other (Moorea), with access to a relatively pristine environment, a well described ecological and oceanographic context (through the MCR-LTER), and the capacity to bring a strong biogeographic contrast to the project. The results of the study will be integrated through modeling to explore the effects of GCC on coral community structure over the next century.

The following publications and data resulted from this project:

2013    Wall CB, Fan TY, Edmunds PJ.  Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum.  Coral Reefs 33: 119-130.
Symbiodinium_Seriatopora photosynthesis
Symbiodinium_Seriatopora PI curve
Symbiodinium_Seriatopora temp-salinity-light
Symbiodinium_Seriatopora water chemistry
- Download complete data for this publication (Excel file)

2013    Wall CB, Edmunds PJ. In situ effects of low pH and elevated HCO3- on juvenile Porites spp. in Moorea, French Polynesia.  Biological Bulletin 225:92-101.
Data at MCR and PANGEA: doi.pangaea.de/10.1594/PANGAEA.833913
- Download complete data for this publication (Excel file)

2013    Vivian R Cumbo, Peter J Edmunds, Christopher B Wall, Tung-Yung Fan. Brooded coral larvae differ in their response to high temperature and elevated pCO2 depending on the day of release.  Marine Biology DOI 10.1007/s00227-013-2280-y.
Data also at PANGEA: doi.pangaea.de/10.1594/PANGAEA.831612
brooded coral larvae 2 - carbonate chemistry
brooded coral larvae 2 - larval release March 2003-2008
brooded coral larvae 2 - respiration_photosyth_mortality
- Download complete data for this publication (Excel file)

2013    Edmunds PJ, Cumbo VR, Fan TY. Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2.  Journal Experimental Marine Biology and Ecology 443: 33-38 Data also at PANGEA: doi:10.1594/PANGAEA.821644
Coral post-settlement physiology
- Download complete data for this publication (Excel file)

2013    Aaron M Dufault, Aaron Ninokawa, Lorenzo Bramanti, Vivian R Cumbo, Tung-Yung Fan, Peter J Edmunds.  The role of light in mediating the effects of ocean acidification on coral calcification.  Journal of Experimental Biology 216: 1570-1577.
coral-light expt.- PAR
coral-light expt.- carbonate chemistry
coral-light expt.- temp_salinity
coral-light expt.- growth
coral-light expt.- protein
coral-light expt.- survival
- Download complete data for this publication (Excel file)

2012    Cumbo, VR, Fan TY, Edmunds PJ. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2.  J Exp Mar Biol Ecol 439: 100-107.
Data is also at PANGEA: doi:10.1594/PANGAEA.823582
brooded coral larvae 3 - carbonate chemistry
brooded coral larvae 3 - light
brooded coral larvae 3 - mortality
brooded coral larvae 3 - protein
brooded coral larvae 3 - respiration and protein
brooded coral larvae 3 - respiration raw data
brooded coral larvae 3 - symbiont density
brooded coral larvae 3 - tank temperature
- Download part 1 of data for this publication (Excel file)
- Download tank parameters data for this publication (Excel file)

2012    Cumbo, VR, Fan TY, Edmunds PJ.  Physiological development of brooded larvae from two pocilloporid corals in Taiwan.  Marine Biology 159: 2853-2866.
brooded coral - carbonate chemistry
brooded coral - release
brooded coral - respiration
brooded coral - settlement competency
brooded coral - size_July
brooded coral - size_protein_symbionts_photosynth
- Download complete data for this publication (Excel file)

2012    Dufault, Aaron M; Vivian R Cumbo; Tung-Yung Fan; Peter J Edmunds.  Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits.  Royal Society of London (B) 279: 2951-2958.  doi:10.1098/rspb.2011.2545
Data is also at PANGEA: doi:10.1594/PANGAEA.830185
recruit_growth_area
recruit_growth_weight
recruit_seawater_chemistry
recruit_survival
- Download complete data for this publication (Excel file)

2011    Edmunds PJ, Cumbo V, Fan TY.  Effects of temperature on the respiration of brooded larvae from tropical reef corals.  Journal of Experimental Biology 214: 2783-2790. 
CoralLarvae_comparison_respir
CoralLarvae_release
CoralLarvae_respir
CoralLarvae_size
- Download complete data for this publication (Excel file)



[ table of contents | back to top ]

Program Information

Long Term Ecological Research network (LTER)


Coverage: United States


adapted from http://www.lternet.edu/

The National Science Foundation established the LTER program in 1980 to support research on long-term ecological phenomena in the United States. The Long Term Ecological Research (LTER) Network is a collaborative effort involving more than 1800 scientists and students investigating ecological processes over long temporal and broad spatial scales. The LTER Network promotes synthesis and comparative research across sites and ecosystems and among other related national and international research programs. The LTER research sites represent diverse ecosystems with emphasis on different research themes, and cross-site communication, network publications, and research-planning activities are coordinated through the LTER Network Office.

LTER site location map

2017 LTER research site map obtained from https://lternet.edu/site/lter-network/



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]