Location:
Arctic Ocean: P-1-94-AR P21, 84o5' N, 174o58' W
California margin: W-2-98-NC TF1, 41o5' N, 125o1' W
Equatorial Pacific: TT013-06MC, 12o00' S, 134o56' W
Methodology:
Solid sediment samples were transferred to two 50 mL centrifuge tubes (2 sample replicates combined per tube). We added 20 mL of 0.25 M NaOH + 0.05 M Na2EDTA solution to each tube, vortexed until all sediment was resuspended and then shook samples for 6 h at room temperature (Cade-Menun et al. 2005). We used a solid to solution ratio of 1:5 for this step to minimize the amount of freeze-dried material that will need to be dissolved for the 31P NMR experiments. Large amounts of salts from the NaOH-EDTA concentrated in NMR samples lead to higher viscosity and increase line broadening on NMR spectra (Cade-Menun and Liu 2013). We chose an extraction time of 6 h to improve total P recovery while limiting the degradation of natural P compounds in the sample. At the end of the extraction, samples were centrifuged at 3,700 rpm for 15 min and supernatants decanted into 50 mL centrifuge tubes. We collected a 500 μL aliquot from each sample, which we diluted with 4.5 mL of ultrapure water. These were refrigerated until analysis for total P content on the ICP-OES. The sample residues and supernatants were frozen on a slant to maximize the exposed surface area during the lyophilization step; this was done immediately after the removal of the 500 μL aliquot. Once completely frozen, the uncapped tubes containing supernatants and residues were freeze-dried over the course of 48 h. Each tube was covered with parafilm with small holes from a tack to minimize contamination. Freeze-dried supernatants from identical sample splits were combined and dissolved in 500 μL each of ultrapure water, D2O, NaOH-EDTA and 10 M NaOH prior to 31P NMR analysis. The D2O is required as signal lock in the spectrometer (Cade-Menun and Liu 2013). Sample pH was maintained at a pH > 12 to optimize peak separation (Cade-Menun 2005; Cade-Menun and Liu 2013). Sample pH was assessed with a glass electrode, and verified with pH paper to account for the alkaline error caused by the high salt content of our samples (Covington 1985).
Total P and metal concentrations in sediment extracts were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). Standards were prepared with the same solutions as those used for the extraction procedure in order to minimize matrix effects on P measurements. Sediment extracts and standards (0 μM, 3.2 μM, 32 μM and 320 μM) were diluted to lower salt content to prevent salt buildup on the nebulizer. Concentration data from both wavelengths (213 nm and 214 nm) were averaged to obtain extract concentrations for each sample. The detection limit for P on this instrument for both wavelengths is 0.4 μM.
Freeze-dried sample residues were ashed in crucibles at 550oC for 2 h and then extracted in 25 mL of 0.5 M sulfuric acid for 16 h (Olsen and Sommers 1982; Cade-Menun and Lavkulich 1997). We centrifuged samples at 3,700 rpm for 15 min, filtered supernatants with 0.4 μm polycarbonate filters, and measured P content on an ICP-OES.