Dissolved data:
Water samples were collected with a Sea-Bird Electronics CTD carousel fitted with 24 12-liter PVC Niskin bottles.The carousel was lowered from the ship with steel wire. Niskin bottles were equipped with nylon-coated closure springs and Viton O-rings. After collection seawater was drained with Teflon-lined TygonTM tubing and filtered through Pall AcropakTM 500 filters on deck (gravity filtration, 0.8/0.45 μm pore size) into Fisher I-Chem series 300 LDPE cubitainers. Approximately 5L was collected per desired depth. Prior to the cruise, the tubing, filters and cubitainers were cleaned by immersion in 1.2 M HCl (Fisher Scientific Trace Metal Grade) for 4-5 days. Once filtered, samples were adjusted to a pH ~2 with ultra-clean 6 M HCl (Fisher Scientific OPTIMA grade), double-bagged, stored in pallet boxes until the end of the cruise and then at room temperature once shipped to the participating laboratories analysis.
Analytical methods for dissolved radionuclides:
LDEO:
In the on-shore laboratory, seawater samples were weighed to determine sample size, taking into account the weight of the cubitainer and of the acid added at sea. Then weighed aliquots of the artificial isotope yield monitors 229Th (20 pg) and 233Pa (0.5 pg) and 15 mg dissolved Fe were added to each sample. After allowing 1 day for spike equilibration, the pH of each sample was raised to 8.3-8.7 by adding ~12 mL of concentrated NH4OH (Fisher Scientific OPTIMA grade) which caused iron (oxy)hydroxide precipitates to form. Each sample cubitainer was fitted with a nozzle cap, inverted, and the Fe precipitate was allowed to settle for 2 days. After 2 days, the nozzle caps were opened and the pH~8.3-8.7 water was slowly drained, leaving only the iron oxyhydroxide precipitate and 250-500mL of water. The Fe precipitate was transferred to centrifuge tubes for centrifugation and rinsing with Milli-Q H2O (>18 MΩ) to remove the major seawater ions. The precipitate was then dissolved in 16 M HNO3 (Fisher Scientific OPTIMA grade) and transferred to a Teflon beaker for a high-temperature (180-200°C) digestion with HClO4 and HF (Fisher Scientific OPTIMA grade) on a hotplate in a HEPA-filtered laminar flow hood. After total dissolution of the sample, another precipitation of iron (oxy)hydroxide followed and the precipitate was washed with Mill-Q H2O, centrifuged, and dissolved in 12 M HCl for a series of anion-exchange chromatography using 6 mL polypropylene columns each containing a 1 mL bed of Bio-rad resin (AG1-X8, 100-200 mesh size) and a 45 μm porous polyethylene frit (Anderson et al. 2012). The final column elutions were dried down at 180°C in the presence of 2 drops of HClO4 and taken up in approximately 1 mL of 0.16 M HNO3/0.026 M HF for mass spectrometric analysis.
Concentrations of 232Th, 230Th and 231Pa were calculated by isotope dilution, relative to the calibrated tracers 229Th and 233Pa added at the beginning of sample processing. Analyses were carried out on a Thermo-Finnegan ELEMENT XR Single Collector Magnetic Sector ICP-MS, equipped with a high-performance Interface pump (Jet Pump), and specially-designed sample (X) and skimmer (Jet) cones to ensure the highest possible sensitivity. All measurements were made in low-resolution mode (∆m/M≈300), peak jumping in Escan mode across the central 5% of the flat-topped peaks. Measurements were made on a MasCom™ SEM; 229Th, 230Th,231Pa and 233Pa were measured in Counting mode, while the 232Th signals were large enough that they were measured in Analog mode. Two solutions of SRM129, a natural U standard, were run multiple times throughout each run. One solution was in a concentration range where 238U and 235U were both measured in counting mode, allowing us to determine the mass bias/amu (typical values varied from -0.01/amu to 0.03/amu). In the other, more concentrated solution, 238U was measured in Analog mode and 235U was measured in Counting mode, yielding a measurement of the Analog/Counting Correction Factor. These corrections assume that the mass bias and Analog Correction Factor measured on U isotopes can be applied to Th and Pa isotope measurements. Each sample measurement was bracketed by measurement of an aliquot of the run solution, used to correct for the instrumental background count rates. To correct for tailing of 232Th into the minor Th and Pa isotopes, a series of 232Th standards were run at concentrations bracketing the expected 232Th concentrations in the samples. The analysis routine for these standards was identical to the analysis routine for samples, so we could see the changing beam intensities at the minor masses as we increased the concentration of the 232Th standards. The 232Th count rates in our Pa fractions are quite small, reflecting mainly reagent blanks, compared to the 232Th signal intensity in the Th fraction. The regressions of 230Th, 231Pa, and 233Pa signals as a function of the 232Th signal in the standards was used to correct for tailing of 232Th in samples.
Water samples were analyzed in batches of 15. Procedural blanks were determined by processing two 4-5 L of Milli-Q water in an acid-cleaned cubitainer acidified to pH ~2 with 6 M HCl as a sample in each batch. An aliquot of two intercalibrated working standard solutions of 232Th, 230Th and 231Pa, SW STD 2010-1 referred to by Anderson et al. (2012) and SW STD 2015-1 which has lower 232Th activity (more similar to Pacific seawater conditions), were also processed like a sample in each batch. Samples were corrected using the pooled average of all procedural blanks run during processing of NBP1702 samples, with the exception of two batches (30 samples). It was discovered that the 233Pa spike added to these batches also contained ~0.4fg of 231Pa. The samples which had this contaminated spike added were blank corrected for 231Pa using the average 231Pa values in the two procedural blanks run in each of those two batches. The average procedural blanks (not including two batches with high 231Pa in the 233Pa spike) for 232Th, 230Th, and 231Pa were 3.2 pg, 0.25 fg, and 0.01 fg respectively.
Derived Parameters:
Th_230_D_XS_CONC_BOTTLE - The dissolved excess Th-230 concentration refers to the measured dissolved Th-230 corrected for a contribution of Th-230 due to the partial dissolution of uranium-bearing minerals, or lithogenics. Thereby the dissolved excess represents solely the fraction of Th-230 produced in the water by decay of dissolved uranium-234. We estimate the lithogenic Th-230 using measuring dissolved Th-232 and a lithogenic Th-230/Th-232 ratio of 4.0e-6 (atom ratio) as determined by Roy-Barman et al. (2002) and a conversion factor to convert picomoles to micro-Becquerels.
Th_230_D_XS_CONC_BOTTLE = Th_230_D_CONC_BOTTLE – 4.0e-6 *1.7473e5 * Th_232_D_CONC_BOTTLE
Pa_231_D_XS_CONC_BOTTLE - The dissolved excess Pa-231 concentration refers to the measured dissolved Pa-231 corrected for a contribution of Pa-231 due to the partial dissolution of uranium-bearing minerals, or lithogenics. Thereby the dissolved excess represents solely the fraction of Pa-231 produced in the water by decay of dissolved uranium-235. We estimate the lithogenic Pa-231 using measuring dissolved Th-232 and a lithogenic Pa-231/Th-232 ratio of 8.8e-8 (atom ratio) which is derived from assuming an average upper continental crustal U/Th ratio (Taylor and McClennan, 1995) and secular equilibrium between Pa-231 and U-235 in the lithogenic material. An additional conversion factor is needed to convert picomoles to micro-Becquerels.
Pa_231_D_XS_CONC_BOTTLE = Pa_231_D_CONC_BOTTLE – 8.8e-8 * 4.0370e5 * Th_232_D_CONC_BOTTLE
The correction for dissolved 231Pa and 230Th derived from dissolution of lithogenic particles, when calculating xs230Th and xs231Pa is small. Therefore, even for a sample where the 232Th, used to make the correction, is flagged as bad, the error contributed in calculating xs230Th nd xs231Pa is small, so they are flagged as questionable (2). See the Processing Description for complete quality flag definitions.